Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep U S ; 2022: 9660-9667, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36684038

RESUMO

Although the average healthy adult transitions from sit to stand over 60 times per day, most research on powered prosthesis control has only focused on walking. In this paper, we present a data-driven controller that enables sitting, standing, and walking with minimal tuning. Our controller comprises two high level modes of sit/stand and walking, and we develop heuristic biomechanical rules to control transitions. We use a phase variable based on the user's thigh angle to parameterize both walking and sit/stand motions, and use variable impedance control during ground contact and position control during swing. We extend previous work on data-driven optimization of continuous impedance parameter functions to design the sit/stand control mode using able-bodied data. Experiments with a powered knee-ankle prosthesis used by a participant with above-knee amputation demonstrate promise in clinical outcomes, as well as trade-offs between our minimal-tuning approach and accommodation of user preferences. Specifically, our controller enabled the participant to complete the sit/stand task 20% faster and reduced average asymmetry by half compared to his everyday passive prosthesis. The controller also facilitated a timed up and go test involving sitting, standing, walking, and turning, with only a mild (10%) decrease in speed compared to the everyday prosthesis. Our sit/stand/walk controller enables multiple activities of daily life with minimal tuning and mode switching.

2.
IEEE Trans Biomed Eng ; 68(5): 1714-1725, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347402

RESUMO

OBJECTIVE: We aimed to develop a system for people with amputation that non-invasively restores missing control and sensory information for an ankle-foot prosthesis. METHODS: In our approach, a wrist exoskeleton allows people with amputation to control and receive feedback from their prosthetic ankle via teleoperation. We implemented two control schemes: position control with haptic feedback of ankle torque at the wrist; and torque control that allows the user to modify a baseline torque profile by moving their wrist against a virtual spring. We measured tracking error and frequency response for the ankle-foot prosthesis and the wrist exoskeleton. To demonstrate feasibility and evaluate system performance, we conducted an experiment in which one participant with a transtibial amputation tracked desired wrist trajectories during walking, while we measured wrist and ankle response. RESULTS: Benchtop testing demonstrated that for relevant walking frequencies, system error was below human perceptual error. During the walking experiment, the participant was able to voluntarily follow different wrist trajectories with an average RMS error of 1.55 ° after training. The ankle was also able to track desired trajectories below human perceptual error for both position control (RMSE = 0.8 °) and torque control (RMSE = 8.4%). CONCLUSION: We present a system that allows a user with amputation to control an ankle-foot prosthesis and receive feedback about its state using a wrist exoskeleton, with accuracy comparable to biological neuromotor control. SIGNIFICANCE: This bilateral teleoperation system enables novel prosthesis control and feedback strategies that could improve prosthesis control and aid motor learning.


Assuntos
Membros Artificiais , Exoesqueleto Energizado , Tornozelo/cirurgia , Articulação do Tornozelo/cirurgia , Fenômenos Biomecânicos , Humanos , Desenho de Prótese , Caminhada , Punho
3.
J Exp Biol ; 222(Pt 17)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31395676

RESUMO

Human running is inefficient. For every 10 calories burned, less than 1 is needed to maintain a constant forward velocity - the remaining energy is, in a sense, wasted. The majority of this wasted energy is expended to support the bodyweight and redirect the center of mass during the stance phase of gait. An order of magnitude less energy is expended to brake and accelerate the swinging leg. Accordingly, most devices designed to increase running efficiency have targeted the costlier stance phase of gait. An alternative approach is seen in nature: spring-like tissues in some animals and humans are believed to assist leg swing. While it has been assumed that such a spring simply offloads the muscles that swing the legs, thus saving energy, this mechanism has not been experimentally investigated. Here, we show that a spring, or 'exotendon', connecting the legs of a human reduces the energy required for running by 6.4±2.8%, and does so through a complex mechanism that produces savings beyond those associated with leg swing. The exotendon applies assistive forces to the swinging legs, increasing the energy optimal stride frequency. Runners then adopt this frequency, taking faster and shorter strides, and reduce the joint mechanical work to redirect their center of mass. Our study shows how a simple spring improves running economy through a complex interaction between the changing dynamics of the body and the adaptive strategies of the runner, highlighting the importance of considering each when designing systems that couple human and machine.


Assuntos
Marcha/fisiologia , Perna (Membro)/fisiologia , Corrida , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Distribuição Aleatória , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...